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Dynamic ductile to brittle transition in a one-dimensional model of viscoplasticity

Alexander E. Lobkovsky1 and J. S. Langer2

1Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
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We study two closely related, nonlinear models of a viscoplastic solid. These models capture essential
features of plasticity over a wide range of strain rates and applied stresses. They exhibit inelastic strain
relaxation and steady flow above a well defined yield stress. In this paper, we describe a first step in exploring
the implications of these models for theories of fracture and related phenomena. We consider a one-
dimensional problem of decohesion from a substrate of a membrane that obeys the viscoplastic constitutive
equations that we have constructed. We find that, quite generally, when the yield stress becomes smaller than
some threshold value, the energy required for steady decohesion becomes a nonmonotonic function of the
decohesion speed. As a consequence, steady-state decohesion at certain speeds becomes unstable. We believe
that these results are relevant to understanding the ductile to brittle transition as well as fracture stability.
@S1063-651X~98!10708-0#

PACS number~s!: 83.10.Hh, 62.20.Fe, 62.20.Mk, 83.50.Nj
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I. INTRODUCTION

A wide range of evidence points toward the necessity
including plastic deformation near a crack tip among
relevant degrees of freedom in theories of dynamic bri
fracture. Our own ideas about this issue emerge from
recent attempt to study fracture stability using a class
cohesive-zone models in which such deformations are n
essarily absent. As described in our report on this project@1#,
we discovered both mathematical and physical difficult
that, so far as we could tell, can be overcome only by int
ducing tip blunting or, perhaps, a spatially extended proc
zone in which irreversible deformations of the brittle so
are taking place.

A successful theory of dynamic fracture also must expl
failure of materials that can flow plastically. Stroh@2# under-
stood that cleavage in such materials is an inherently
namic process in which plastic flow is slow enough th
stresses can increase to large values near the crack ti
order to explain slower ductile crack propagation, McCl
tock @3# introduced a novel void nucleation and coalesce
mechanism. At present, theories of these two failure mec
nisms are separate and incompatible with one another.

Attempts to explain the differences between ductile a
brittle fracture usually focus on the emission and mobility
dislocations near the crack tip@4,5#. A different microscopic
mechanism must be responsible for the ductile to brittle tr
sition in noncrystalline materials such as toughened ther
plastics@6,7#. The study of Freund and Hutchinson aimed
understanding dynamic fracture within a theory of co
tinuum plasticity @8,9#. Under the assumption of elast
strain-rate dominance near the tip, they found a nonmo
tonic dependence of the fracture toughness on the c
speed. They used an idealized viscoplastic constitutive
however, in which the plastic strain rate is identically ze
below a yield stress and responds instantaneously to cha
in the stress. The condition of elastic strain-rate domina
breaks down for slow cracks, and thus the analysis of Fre
and Hutchinson cannot be generally valid. Another appro
PRE 581063-651X/98/58~2!/1568~9!/$15.00
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by Freund@10# has been to use a rate-dependent cohes
zone model@11# and to consider two separate fracture cri
ria, one based on stress and the other on displacement.
is the class of models that we found to be ill-posed for o
stability analyses, presumably because they omit esse
features of an extended plastic process zone.

In a recent study, Falk and one of the present auth
~J.S.L.! have proposed a theory of viscoplasticity in amo
phous materials@12# ~denoted FL in what follows! in which
the equations of linear elastodynamics are supplemente
nonlinear equations of motion for a set of internal state va
ables. This theory is based directly on molecular-dynam
simulations, which revealed the existence of localized we
regions, called ‘‘shear transformation zones.’’ The new
ternal state variables describe the populations of these zo
and the nonlinear equations describe how those populat
determine the time-dependent elastic and plastic behavio
the material.

In the picture presented in FL, the shear transformat
zones are two-state systems, and transitions between t
states produce increments in the plastic strain. Becaus
zone that has transformed once cannot transform again in
same direction, the plastic strain remains bounded when
applied stress is small. An additional assumption of FL
that the zones are created and annihilated at rates determ
by the inelastic shear rate. It is this process, in which n
zones replace old ones, that produces persistent plastic
at sufficiently large stresses. Plasticity is a fully dynam
phenomenon in this theory. It occurs in a well defined w
depending on the state of the system, in response to
dependent perturbations. Thus this new theory may be
pable of describing both brittleness and ductility in fractu

We report here on our initial attempts to incorporate so
of the basic features of the FL theory into a model of fra
ture. As a first step in exploring the implications of th
theory, we examine a one-dimensional model of decohes
of a thin membrane from a substrate, where the membr
obeys a simplified version of the FL viscoplastic constituti
equations. The membrane is pulled from the substrate
1568 © 1998 The American Physical Society
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PRE 58 1569DYNAMIC DUCTILE TO BRITTLE TRANSITION IN A . . .
weak springs, and the point of decohesion propagates at
stant speed, like a crack tip. As noted by Barberet al. @13#
and Marder and Gross@14#, the inverse stiffness of the driv
ing springs in such models is analogous, at least in so
ways, to the width of the strip in two-dimensional mode
fracture. This effective width plays an important role in o
interpretation of the brittle-ductile transition in this syste
The one-dimensional nature of the model is, of course
significant limitation.

This paper is organized as follows. We introduce our s
plified FL model in Sec. II. In particular, we introduce tw
different versions of the nonlinear term that determines
plastic yield stress, and we examine the time dependenc
the system near the onset of plastic flow for these two ca
In Sec. III, we discuss the linear version of this model a
show that it corresponds to conventional viscoelasticity w
inelastic deformation but no persistent plastic flow. Then
Sec. IV, we describe both analytic and numerical studies
the nonlinear model, and show how the two rate-depend
mechanisms introduced in Sec. II produce different versi
of a brittle-ductile transition. We conclude in Sec. V with
discussion of how the lessons learned from this simple c
of models might be applicable to more realistic situations

II. ONE-DIMENSIONAL MODEL OF DECOHESION

We consider a thin membrane decohering from a subst
as shown in Fig. 1. The system has translational symmetr
the direction perpendicular to the plane of the figure. As
additional simplifying approximation, we allow the mem
brane to move only in the direction perpendicular to the s
strate. The configuration of the membrane is thus descr
by its displacementu(x,t), a non-negative function of posi
tion x and timet. A cohesive force,

f 5H 2k2u for 0,u,d

0 otherwise, ~2.1!

with a finite ranged, attracts the membrane to the substra
Decohesion is driven by weak springs of strengtha2 whose
relaxed positions are atu5u` . The total strain in the mem
brane ise tot5]u/]x. This strain and, equivalently, the dis
placementu consist of additive elastic and plastic parts:

u5uel1upl ; e tot5
]uel

]x
1

]upl

]x
. ~2.2!

For later notational simplicity, we write

]upl

]x
5e. ~2.3!

FIG. 1. A model of one-dimensional decohesion driven by we
springs.
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By definition, the elastic part of the strain is linearly propo
tional to the stress,s52m(]uel /]x), wherem is the shear
modulus. Then the equation of motion for the membrane

rü5
]s

]x
2k2u Q~d2u!2a2~u2u`!, ~2.4!

wherer is the linear mass density andQ( ) is the Heaviside
step function. Dots denote time derivatives.

The equation of motion for the plastic strain that we sh
use here is

ė5
1

t
~ls2D!. ~2.5!

This is a simplified version of Eq.~3.14! in FL. ~We have
evaluated the right-hand side of the latter equation in
limit of small stresss and have setnD5D, ntot5n` .) By
making this small-s approximation, we lose some of th
memory effects that were obtained in FL via a strongly no
linears dependence of the rate factors in the equation foė.
We believe that the absence of those effects makes
quantitative and not qualitative differences in the results
be presented here. However, that point may require fur
investigation.

Our single state variable,D(x,t), is a measure of the im
balance in the populations of the two-state systems. The
term on the right-hand side of Eq.~2.5!, ls/t, is the usual
linear relation between the plastic strain rate and the str
The second term,2D/t, is the rate at which these two-sta
systems transform spontaneously from their ‘‘forward’’
their ‘‘backward’’ states, and is therefore a negative con
bution to ė.

Our equation of motion forD has the form

Ḋ5 ė2F~ ė,s!D. ~2.6!

This is exactly the same as Eq.~3.15! in FL except that we
have not yet specified the strain-rate dependent couplinF
betweenḊ and D. The first term on the right-hand side o
Eq. ~2.6! simply expresses our assumption that the tran
tions within the two-state systems correspond to increme
in plastic strain. The second, i.e., the nonlinear term, is
effect of creation and annihilation of these zones and, as
shall see immediately, is responsible for the existence o
finite plastic yield stress.

To illustrate the properties of the nonlinear term in E
~2.6!, we consider two plausible forms ofF that produce
qualitatively different dynamic decohesion in certain r
gimes. The form ofF is restricted by the assumption that
must vanish when the plastic strain rate vanishes. It is t
proportional to some power ofė. ~In higher dimensions, we
would also require rotational invariance.! The first form that
we shall examine is the same as that used in FL:F1

5g1ės. Here, the couplingF1 is proportional to the local
rate of plastic energy dissipation. We call this model 1. N
thatF1 can be negative in some circumstances. Our sec
possibility, model 2, is one in which only the local plast
strain rate controls the evolution ofD, in which case the
simplest choice isF25g2ė2.

k
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1570 PRE 58ALEXANDER E. LOBKOVSKY AND J. S. LANGER
We explore first the behavior of model 1. Substituting t
expression forė from Eq. ~2.5! into Eq. ~2.6!, we obtain

Ḋ5
1

t
~ls2D!~12g1sD!. ~2.7!

For constant stresss, there are two stationary solutions:

D5D1A5ls and D5D1B5
1

g1s
, ~2.8!

which, as shown in Fig. 2, cross at

s5sy15
1

Ag1l
, D5Dy15A l

g1
. ~2.9!

At any fixed s, only one of these stationary solutions
stable against perturbations. Fors,sy1, the stationary solu-
tion D1A with ė50 is stable. Fors.sy1, on the other hand
the stable stationary solutionD5D1B is a flowing steady
state with

ė5
l

st
~s22sy1

2 !. ~2.10!

This rate vanishes when the stress approaches yield
above. However, the relaxation timet1 for perturbations
away from the flowing state diverges fors nearsy1:

t15
sy1

2 t

us22sy1
2 u

. ~2.11!

This is quite unlike the conventional elastic—ideally plas
solid in which this relaxation time is zero by definition.

A possibly unphysical feature of this model is that, f
some initial conditions,D may increase indefinitely as
function of time. It is easy to see from Eq.~2.7!, however,
that if D,Dy1 at any time, it will remain so for all othe
times regardless of the stress history.

Model 2 exhibits an important qualitative difference in
behavior. Let us perform the analysis of the preceding pa
graphs usingF2. Substituting Eq.~2.5! into Eq. ~2.6!, we
obtain

FIG. 2. The steady-state values ofD in model 1 as functions of
s ~measured in natural units!. The two curvesD1A5ls and D1B

51/g1s cross at (sy1 ,Dy1). The arrows indicate the direction o
motion of D for fixed s.
m

a-

Ḋ5
1

t
~ls2D!S g2

t
D22

g2ls

t
D11D . ~2.12!

We again look for the stationary statesḊ50. The situation is
shown in Fig. 3. In this case, the state withD5D2A5ls and
no plastic flow,ė50, is stable for alls. As seen in Fig. 3, it
never intersects any other steady state in theD-s plane. For

s.sy25
2

l
A t

g2
, ~2.13!

two new stationary states appear with

D5D2B65
l

2
~s6As22sy2

2 !. ~2.14!

The state withD5D2B2 is the stable one of the pair. Th
plastic strain rate in this stationary state is nonzero:

ė5
l

2t
~s1As22sy2

2 ! ~steady state,s.sy2!.

~2.15!

The characteristic decay timet2 of perturbations around the
flowing stationary state again diverges at the yield stre
although the divergence is not as strong as in model 1:

t25
t

2

sy2
2

~s1As22sy2
2 !As22sy2

2 ~s.sy2!.

~2.16!

The two nonlinear models exhibit a number of simil
features. Most importantly, steady plastic flow in response
a stress above a yield level is a natural consequence o
dynamical constitutive equations. The flow has a nonz
response time to changes in the stress. It can also be sh
that inelastic strain is partially recovered in both mode
However, there are several important differences between
two nonlinear models. First, the steady flow rate does
vanish in model 2 ats5sy2. Second, ‘‘runaway’’ behavior
cannot occur in that model sinceḊ,0 for D.D2A . And

FIG. 3. Steady-state values ofD as functions ofs ~measured in
natural units! for model 2. One of the three,D2B1 , is unstable to
small perturbations. Since the steady-state curves never cross
system remains close to the nonflowing steady stateD2A if the
stress increases slowly enough. The meaning of the arrows is
same as in Fig. 2.



tw
on
te
o

e

s
th

a
m
nd
o

h

on
na

p
ou
ak

si
r-
th
e
o
iss
o

ond
or-
rgy
de-
tic

ar
t

ing
an

ve
tic-

ly,

on
—

ng

PRE 58 1571DYNAMIC DUCTILE TO BRITTLE TRANSITION IN A . . .
finally, for stresses greater than the yield stress, there are
stable stationary solutions in model 2 as opposed to only
in model 1. Which one of these is selected by the sys
depends on the stress history. For example, only the n
flowing state in model 2, withD5D2A , occurs if the stress is
increased slowly enough, i.e., whenṡ/s!1/t. As we shall
see, this distinction between the models leads to qualitativ
different behaviors at small speeds.

It is convenient at this point to convert to dimensionle
variables in which all lengths are measured in units of
range of the cohesive interactiond, time is measured in units
of dAr/2m, and stress in units of 2m. The state variableD is
then measured in units ofd23 since it has dimensions of
number density. For simplicity, we continue to use the sy
bols u and s for our dimensionless displacements a
stresses. We also restrict our attention to steady-state s
tions moving in the negativex direction with speedv. All
functions ofx and t in the frame of reference moving wit
the decohesion front depend only on the combinationx85x
1vt. Without loss of generality, we setx850 at the point of
decohesion where, in these units,u51. Then, for simplicity,
we setx85x.

Our equations of motion now have the form

v2~uel9 1upl9 !5uel9 2k2~uel1upl!Q~2x!2a2~uel1upl2u`!,
~2.17!

vupl9 5
1

t
~luel8 2D!, ~2.18!

vD85vupl9 2F~vupl9 ,uel8 !D, ~2.19!

where primes denote differentiation with respect tox, and

F15g1vupl9 uel8 , ~2.20!

F25g2~vupl9 !2. ~2.21!

Note that formally Eq.~2.17! is equivalent to Eq.~2.4! only
if u.1 everywhere behind the decohesion front. This c
dition does not always hold in a discrete one-dimensio
model of fracture@14#. All numerical solutions of our non-
linear decohesion model did possess the property thatu.1
for all x.0, however. Even if the membrane were to a
proach the substrate behind the decohesion front, one c
justify Eq. ~2.17! by arguing that the cohesive springs bre
irreversibly and do not reconnect.

Finally, we derive an expression for the decohesion re
tanceG(v), which is the work that the driving springs pe
form on the membrane per unit length of advance of
decohesion front. Since the driving springs relax to th
equilibrium length far behind the decohesion front, all
their stored elastic energy ahead of the front must be d
pated in the decohesion process. Thus, the total work d
must be

G~v !5
1

2
a2u`

2 . ~2.22!

If we multiply Eq. ~2.17! by u8(x) and integrate overx, we
obtain
o
e

m
n-

ly
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G~v !5
1

2
k21E dx upl9 uel8 1

1

2
~upl8 !2ux5` . ~2.23!

The first term on the right-hand side of Eq.~2.23! is clearly
the energy spent in breaking cohesive bonds. The sec
term is the energy dissipated in plastic work in the neighb
hood of the decohesion front. The third term is the ene
locked into the plastic wake left by the decohesion. The
cohesion front in this model may leave a residual plas
strain behind it. Our problem is to computeG(v) explicitly
as a function ofv and then use Eq.~2.22! to determinev as
a function of the driving forceau` .

III. LINEAR ANALYSIS

Before going ahead with an analysis of this nonline
model of viscoplasticity, it will be useful to look briefly a
the linear case in which we setF50 in Eq. ~2.6!. Then we
haveD5e5upl8 , and the equation of motion forupl is

u̇pl5vupl8 5
1

t
~luel2upl!. ~3.1!

The remaining equation of motion is Eq.~2.4! or, equiva-
lently, Eq. ~2.17!.

Far away from the region where decohesion is tak
place, our system is translationally invariant, and we c
compute a dispersion relation for waves of the formu
5u0exp(ikx2ivkt). In the limit of vanishinga, we find

k25vk
2S 11

l

12 ivkt
D . ~3.2!

The wave speedc is

c[ lim
k→0

Re
vk

k
5

1

A11l
. ~3.3!

It is important to recognize that, by linearizing, we ha
reduced our system to a conventional model of viscoelas
ity. The solution of the time-dependent version of Eq.~3.1!
can be written in the familiar form

e tot~ t !5
1

c2 s~ t !2lE
2`

t

dt8expF2
1

t
~ t2t8!G ṡ~ t8!,

~3.4!

where e tot is the total ~elastic plus plastic! strain, ands
5]uel /]x is the stress in dimensionless units. Equivalent

s~ t !5c2e tot~ t !1lE
2`

t

dt8expF2
1

tc2 ~ t2t8!G ė tot~ t8!.

~3.5!

From~3.4! we find that the creep compliance — the variati
of the strain that is produced by a unit jump in the stress
is

C~ t !511l~12e2t/t!. ~3.6!

The system exhibits unit instantaneous elasticity, followi
which the strain increases on the time scalet to its final
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value 11l51/c2. Similarly, we see from Eq.~3.5! that a
unit jump in the strain produces first an instantaneous ju
in the stress, after which the stress decreases to a con
nonzero value.

Because our equations of motion~2.17! and~3.1! are lin-
ear, we can solve the decohesion problem analytically.~We
shall need these linear solutions in order to interpret featu
of the nonlinear solutions described in the next section.! The
analysis is particularly simple if we take the limit of wea
driving springs,a→0. To do this, we must also take th
limit u`→` in such a way as to keepau` constant. That is,
we keepG(v) fixed in Eq.~2.22!.

For x,0, we can seta50 immediately in Eq.~2.17! and
look for a solution in the form

uel5Aeqx, upl5Beqx. ~3.7!

That is, we look for values ofA, B, and q that satisfy the
homogeneous equation:

S 2b2q21k2, v2q21k2

2l/vt, q11/vt D S A

BD 50. ~3.8!

The solvability condition for Eq.~3.8! is

q3vtb21q2bc
22qvtk22

k2

c2 50, ~3.9!

where

b2[12v2, bc
2[12v2/c2. ~3.10!

Equation~3.9! has only one positive root, sayq1. The bound-
ary conditionuel(0)1upl(0)51 is therefore sufficient to de
termine uniquely the solution in the regionx,0. We find

A5c2S 11q1vt

11q1vtc2D , B5
lc2

11q1vtc2 . ~3.11!

For x.0, all k ’s appearing in Eq.~3.9! must be replaced
by a ’s. The resulting equation has two negative solutions
q that, for smalla, are

q052
a

bcc
, q252

bc
2

vtb2 1O~a2!. ~3.12!

We therefore construct solutions of the form

uel5D1eq0x1D2eq2x1c2u` , ~3.13!

upl5S lD1

11vtq0
Deq0x1S lD2

11vtq2
Deq2x1~12c2!u` .

~3.14!

Here, we have included the particular solutions~simple con-
stants! that satisfy the boundary conditionu→u` at x→
1`. We then require thatuel andupl and their derivatives be
continuous atx50. Calculating to first order inau` , we
find

D152c2u`S 11
q0

q2
D1AS 12

q1

q2
D , ~3.15!
p
ant,

es

r

D25A
q1

q2
1c2u`

q0

q2
, ~3.16!

whereA is given in Eq.~3.11!. Finally, decohesion tough
ness,

K~v ![A2G~v !5au`5
q1c

bc
S b2vtq11bc

2

c2vtq111 D . ~3.17!

We show a representative graph ofK as a function of the
speedv in Fig. 4. As expected from a model of this kind
K(v) is monotonic, diverges atv5c as 1/bc , and is equal to
k for v50, which confirms that viscous dissipation is ne
ligible for slow decohesion.

IV. SOLUTIONS OF THE NONLINEAR MODELS

We turn now to the nonlinear models defined by Eq
~2.17!–~2.19!. These are equivalent to a set of ordinary d
ferential equations that, for model 1, are

b2s85
v
t

~ls2D!1k2Q~2x! u1a2~u2u`!, ~4.1!

e85
1

vt
~ls2D!, ~4.2!

D85
1

vt
~ls2D!@12g1sD#, ~4.3!

u85s1e. ~4.4!

To obtain the analogous equations for model 2, replaceg1s
in the square brackets in Eq.~4.3! by g2ve85g2(ls
2D)/t.

We integrate these equations numerically using a twel
order predictor-corrector algorithm. The initial conditions a
s5e5D50 at x→2`, far ahead of the decohesion fron
Our strategy is to fix the material parametersl, g, andt ~or,
equivalently,c, sy , andt), the velocityv, and the strength
of the driving springsa2, and to adjustu` to obtain a solu-
tion with the property thatu(0)51 andu→u` asx→1`.
Such a solution always exists. Recall that, in our analo
with the crack propagating in a prestressed strip, the par
eteru` is analogous to the displacement of the strip edges
ahead of the crack tip. We therefore might think of our pr

FIG. 4. Decohesion toughnessK(v) in natural units for the lin-
ear model witht510 andl51.
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PRE 58 1573DYNAMIC DUCTILE TO BRITTLE TRANSITION IN A . . .
cedure as adjusting the driving stress on the strip to ach
a certain velocity of fracture propagation.

Before looking in detail at these solutions, consider
following thought experiment. Imagine that we start with
static, unstressed system andu`50. Suppose also that th
cohesive springs act only forx,0; that is, we arbitrarily
disconnect them forx.0. Let us now increaseu` from zero
quasistatically. In this limit of infinitesimally slow displace
ment and a fixed position of the decohesion front, the n
linear models are indistinguishable from the linear mode
long as the stress in the membrane nowhere exceeds the
tic yield stress. This is because, fors,sy , the quasistatic
system must stay arbitrarily close to the nonflowing st
with e5D5ls and the nonlinear term in Eq.~2.6! is irrel-
evant.

The linear theory tells us that the largest stress occur
x50 where, for this quasistatic situation, it has the va
smax5au`k. At this point, the displacement of the mem
brane isu(0)5au` /c. Clearly, the behavior of this system
depends sensitively on whether or notsmax exceeds the plas
tic yield stresssy before u(0) reaches the breaking poin
u(0)51. Thus the critical value of the yield stress th
marks some kind of quasistatic boundary between brittle
ductile behavior of these models issy5kc.

If sy.kc, then the threshold for propagating decohes
is reached before any plastic flow occurs, and we deduce
both nonlinear models behave much like the linear model
small enough speedsv — i.e., they are ‘‘brittle.’’ On the
other hand, ifsy,kc, then plastic flow occurs before th
leading cohesive spring breaks. In this case, the two non
ear models behave differently from one another.

In model 1, plastic flow must begin as soon as the ma
mum stress reaches the yield stress. As shown in Fig. 2
flowing and nonflowing states cross at this point. Ifu` is
increased very slowly beyond this point, just as in conv
tional models of plasticity, the stress atx50 remains fixed at
sy . The displacementu(0) also remains fixed at its valu
below the decohesion threshold,u(0)51, because no addi
tional stress can be applied to stretch the cohesive spri
The only thing that can happen is that, asu` continues to
grow, the material in the regionx.0 deforms plastically.
Thus, decohesion is not initiated, but an indefinitely lar
amount of plastic work is done on the system. We theref
anticipate that the decohesion toughnessK(v) for model 1
must diverge atv50 wheneversy,kc.

The most interesting questions, of course, have to do w
the behavior at nonzero propagation speedsv, where the
quasistatic approximations are not necessarily valid. In g
eral, our decohesion criterionu(0)51 implies that the
breaking stresss(0) increases with increasingv. ~We shall
not consider a stress-based criterion, which might be sim
in some respects.! Actually, at nonzero speeds, the stre
reaches its maximum some distance behind the decohe
front. In the linear version of the model, this maximum stre
diverges atv5c. Thus, even if the maximum stresskc is
less thansy at v50, it will become greater thansy at some
onset speed for plastic flow that we shall callvp . At speeds
larger thanvp , the system must deform plastically.

To see what happens atvp , we must look at the numerica
solutions of Eqs.~4.1!–~4.3!. We continue to consider only
model 1 for the moment. In Fig. 5, we show the decohes
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toughnessK(v)5au` as a function ofv/c, for sy53kc,
t510, l51, and for three different values ofa. For com-
parison, we also showK(v) for the linear theory. The mos
striking feature is that these four curves are almost coin
dent forv/c less than a critical value of about 0.73; but th
break away from the linear theory at larger speeds, the
tems with smallera being the most dissipative. We see ev
more explicitly what is happening in Figs. 6 and 7, where
have plotted the total displacementu(x) and the plastic
strain e(x) for a51023, and for two velocitiesv/c50.71
and 0.75, just below and just above the critical speed, res
tively. Note that the plastic strain is very much larger for t
slightly larger value ofv. In that case, the plastic strai
grows almost linearly withx before it reaches its peak. Th
spatial extent of the region in which this plastic strain acc
mulation happens seems to scale linearly witha21. Note
also that decohesion produces a residual plastic deforma
and, accordingly, a residual stress~not shown here! that per-
sist infinitely far behind the front.

We deduce from these data that thea→0 limit exists only
for v,vp . That is, if we try to drive decohesion at a spe
greater thanvp with springs of arbitrarily small force-
constanta2, the dissipated energy per unit advance of t
front grows without bound. For model 1,vp is the speed at
which the maximum stress just exceeds the plastic y
stress. To confirm this interpretation, in Fig. 8 we plotvp as
a function ofsy and compare this with the prediction of th
linear model for the maximum stress,

FIG. 5. Decohesion toughnessK(v) in natural units withsc

53kc and t510, for three values of the drivinga. The limit of
weak drivinga→0 exists only forv,vp'0.73c.

FIG. 6. Total displacementU(x) as a function ofx, both mea-
sured in units ofa21, for speeds just below and just abovevp . A
considerable increase in the driving forceaU` is needed to increase
the decohesion speed by 4%.
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smax5
c

bc
au`'sy at v5vp~sy!, ~4.5!

whereau` is given in Eq.~3.17!. Agreement with the linear
theory becomes exact in the limit of slow decohesion. W
can also qualitatively understand the fact that the predic
of the linear model consistently overestimates the onset
locity vp . When the nonlinear term can be treated pertur
tively, it leads to a decrease in the relaxation rate ofD, since
the right-hand side of Eq.~4.3! is reduced. The right-hand
side of the equation for the derivative of the stress~4.1! is
therefore increased, thus allowing the stress to reach a hi
level before thea2(u2u`) term reverses the sign ofs8. As
a result, the maximum stress in a nonlinear system rea
yield at a lower velocity than in the corresponding line
system.

So far, we have looked in detail only at the physically le
realistic situation in which the plastic yield stress is high
than the breaking stress at thev50 threshold for decohesion
We now consider the case where the yield stress is lo
than the breaking stress. In model 1, ifsy,kc, then we are
always in the regime where thea→0 limit fails to exist. In
examining the behavior in this regime, therefore, we cho
a small, fixed value fora, specificallya50.01, and look at
various values of other parameters.

FIG. 7. Plastic straine(x) as a function ofax for speeds just
above and just belowvp . Note that the peak ine(x) for v/c
50.75.vp is more than twice that of the peak forv/c50.71
,vp , and the level of plastic strain far behind the decohesion fr
changes by a factor of about 5.

FIG. 8. Onset velocityvp in natural units as a function of th
yield stress for model 1.
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Figure 9 is a graph ofK(v) as a function ofv/c for sy
50.5kc. The most interesting feature of this graph is th
dK/dv,0 for speedsv between zero and, say,va . Propa-
gation at speeds in that interval must be unstable; thus, if
increase the driving parameteru` to some value such tha
K5au`.K(va), then v must jump to some value on th
high-speed, stable branch of this curve. Conversely, if
decrease the driving force so thatau`,K(va), then decohe-
sion must stop abruptly. As anticipated, the decohes
toughness is large at small speeds because the plastic s
relaxes very slowly near threshold, and the flowing reg
extends far behind the decohesion front. At larger speeds
deformation is more localized, and there is less dissipat
At yet larger speeds, of course, the driving force must
crease in order to make the front move at speeds compar
to c. To illustrate these variations in the plastic deformati
explicitly, in Fig. 10 we plot the plastic strain rateė as a
function of x/v. This figure can be interpreted as the plas
strain rate as a function of time after passage of the deco
sion front.

We turn now to the properties of model 2, which mu
behave in a less conventional manner according to Fig
Even when the breaking stress exceeds the plastic y
stress,sy,kc, the system can remain in the stationary st
with D5D2A , ė50 so long as the stress is raised suf

t

FIG. 9. Decohesion toughnessK(v) in natural units for model 1
in the casesy150.5kc for a50.01.

FIG. 10. Plastic strain rate as function of timex/v in natural
units after the passage of the decohesion front in model 1.
parameters are the same as in Fig. 9. Plastic flow persists m
longer for slow decohesion. Also note that plastic strain recover
appreciable only when decohesion is fast.
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ciently slowly. No plastic flow occurs, and the decohes
toughness atv→0 must bek, just as in the linear model.

To predict the onset of plastic flow in model 2, i.e.,
compute the analog ofvp(sy), we can use the linear theor
to estimate when the nonlinear term in the equation of m
tion ~4.3! becomes non-negligible. It is useful to carry o
this exercise for both models. For model 1, validity of t
linear approximation requires

g1sD>g1uel8upl8 !1. ~4.6!

Our linear analysis tells us that

g1uel8upl8 'g1l~acu`!2S 12
vtq1

11vtq1
e2x/vtD . ~4.7!

This quantity vanishes at the decohesion front,x50, and
rises monotonically to a constant asx→`. We know that
g1l51/sy

2 and, for kvt!1, au`'k. Thus the inequality
~4.6! reduces tosy1@kc, consistent with our quasistati
analysis for this model.

Model 2 behaves differently. The analog of the inequa
~4.6! is

g2ve8D>g2vupl8 upl9 !1. ~4.8!

From the linear analysis, we find

g2vupl8 upl9 'g2vl2q1
3c4

~11vtq1!

~11vtq1c2!2

3e2x/vtS 12
vtq1

11vtq1
e2x/vtD . ~4.9!

Now the nonlinear correction is localized in a finite regi
whose size is of ordervt near the decohesion front. We us
g2l254t/sy2

2 . Then, in the casekvt!1, the inequality
~4.8! becomes

vt!
sy2

2

4ck3
, ~4.10!

or, equivalently,

kvt

c
!F sy2

2s~0!G
2

. ~4.11!

Both sides of expression~4.11! are accurate only forkvt
!1. In the opposite limit,kvt@1, Eq.~4.8! reduces simply
to sy2@k. The important point is that, whenv is sufficiently
small in model 2, brittle behavior can occur for values of t
plastic yield stresssy2 that are smaller than the decohesi
stresss(0). The right-hand side of expression~4.10! gives
us an upper bound forvpt for model 2.

These features of the behavior of model 2 are confirm
by our numerical results. In Fig. 11, we show the decohes
toughnessK(v) as a function ofv for sy250.8kc for three
different values ofa2, l51, andt54. As expected,K(0)
5k. There is a stable region at smallv wheredK/dv.0 and
in which the limit a→0 exists. The onset of plastic flow
speed, and the failure of that limit, occurs atv5vp , where
K(v) first begins to rise sharply. Beyond its maximum, t
-

d
n

fracture toughness in model 2 behaves qualitatively l
model 1. That is, for small but nonzero values ofa, there is
an unstable region in whichK(v) decreases for increasingv.
At yet larger values ofv, K(v) rises again and diverges asv
approachesc in the limit of a→0. As shown in Fig. 12, the
plastic flow onset velocityvp in model 2 vanishes only as th
yield stresssy is reduced to zero. Its behavior for small yie
stresses is consistent with the prediction of the perturba
theory Eq.~4.10!.

V. DISCUSSION

We have explored these one-dimensional models of de
hesion primarily as an attempt to understand how a fu
dynamic description of viscoplasticity might play a role
theories of dynamic fracture. We are particularly interes
in how the concepts of brittleness and ductility will emer
in such theories.

To begin this discussion, consider one way in which
might expect the brittle-ductile transition to appear in
theory of, say, mode I fracture along the center line of
infinitely long, two-dimensional strip. Let the width of th
strip be 2W, and suppose that the driving force is produc
by a rigid displacement of sizeu` at its edges. In the case o
brittle fracture, the stress-intensity factor at the tip of t
crack is proportional toKI5u` /AW. Infinitely far behind
the crack tip, the steady-state crack opening displaceme

FIG. 11. Decohesion toughnessK(v) in natural units in model 2
for three different values ofa. Other parameters aresy250.8kc,
l51, andt54.

FIG. 12. Onset velocityvp in model 2 forl5t51 as a function
of the yield stresssy2 ~both measured in natural units!. Lower yield
stresses are numerically difficult to access.
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2u` . In the limit W→`, KI remains fixed for a fixed spee
of crack propagation, and thus the ratiou` /W vanishes. The
crack remains sharp and narrow on the macroscopic scalW.

The extreme ductile version of this situation is one
which the solid is replaced by a viscous fluid, and the cra
becomes a finger in a Hele-Shaw cell. In this case,
steady-state finger has a widthu` of approximatelyW, and
the dissipation rate, proportional toKI

2 , diverges asW→`.
In any real two- or three-dimensional solid, of course,
plastic yield stress is nonzero. Therefore, as we increaseW at
fixed crack speed — no matter whether the crack is adva
ing in a brittle or ductile manner — we must eventually g
to the point where the stresses far away from the crack
drop below the plastic yield stress. The dissipation may
come very large, but it remains finite whenW→`.

In our one-dimensional model, the closest available a
log of the width W is the length scalea21. However, we
have no analog of the stress concentration that is produ
by a real second dimension, and thus we have no wa
which the far-field stresses can be made arbitrarily smal
less than the plastic yield stress — by taking the limit o
large system. In its brittle mode, as we have seen, the an
of the stress-intensity factor for our decohering membran
K(v)5au`'u` /W; this quantity remains finite at fixedv
in the limit a→0. In its ductile mode, however, our syste
is behaving more like a finger in a Hele-Shaw cell than
crack in a solid strip. As soon as plastic flow starts at a
point, the dissipation rate diverges asa→0. In short, the
distinction between brittle and ductile failure in this syste
must be qualitatively unlike that which occurs in real fra
ture. In two dimensions, plastic yielding always occurs n
the tip. On the other hand, stresses become arbitrarily s
far away from the crack. Therefore, neither the first onse
plastic flow nor the divergence of the fracture energy in
limit of infinitely wide strip seem plausible definitions o
ductility. To develop an appropriate ductility criterion, w
shall have to carry out fully two-dimensional investigation

What, then, are the lessons to be learned from this e
cise? What questions does it raise? We have confirmed
expected, that the FL model of viscoplasticity produces b
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brittle and ductile propagating failure modes. In this on
dimensional version, the transition between brittle and d
tile behavior is perfectly sharp and well defined; it is disti
guished by the divergence of the decohesion toughness in
limit a→0. Is there any such sharp distinction in high
dimensions? The behavior of our one-dimensional mod
especially at small propagation speedsv, is strongly sensi-
tive to our choice of the nonlinear coupling between t
plastic strain rate and the new variableD that describes the
internal state of the system. It will be important to lea
whether more realistic models in higher dimensions exh
similar sensitivity to details of the mechanisms that cont
plastic flow.

Perhaps the most interesting but problematic aspect of
results is related to that sensitivity. Both of the models d
cussed here exhibit unstable steady-state solutions at
propagation speeds. We know that these solutions are
stable because the decohesion toughnessK(v) decreases
with increasingv. In both models,K(v) rises again at highe
speeds, and the stable high-v solutions are ductile. In mode
2, however, there is also a stable small-v solution that is
brittle. That is, there exists a range of values ofK(v) for
which there are two stable steady-state solutions, one br
and one ductile. Within such a range of driving forces, t
system is likely to exhibit complex, nonsteady behavi
What might be the analog of such behavior in tw
dimensional models of fracture? Might there be situations
which multiple brittle solutions exist as in a discrete tw
dimensional fracture model of Ref.@14#? Or might the slow
solution be the ductile one? More generally, might the n
dynamics emerging from the FL model of viscoplasticity
a clue for understanding the complex instabilities and diff
ent modes of behavior observed in real fracture?
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